a2 United States Patent

Miyamoto

US009483324B2

US 9,483,324 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)
(73)
")

@

(22)
(86)

87

(65)

(30)

Jun. 26, 2012

(1)

(52)

PROGRAM CONVERSION DEVICE AND
METHOD, PROCESS SWITCHING METHOD,
METHOD OF DETERMINING EXECUTION
SCHEME AND PROGRAM STORAGE
MEDIUM THEREFOR, PROCESSOR
SYSTEM, AND PARALLEL EXECUTION
SCHEME

Applicant: NEC Corporation, Minato-ku, Tokyo
(IP)

Inventor: Takamichi Miyamoto, Tokyo (JP)

Assignee: NEC CORPORATION, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 14/411,256
PCT Filed: Jun. 12, 2013
PCT No.:

§ 371 (e)(D),
(2) Date:

PCT/IP2013/003684

Dec. 24, 2014

PCT Pub. No.. W02014/002412
PCT Pub. Date: Jan. 3, 2014

Prior Publication Data

US 2015/0205643 Al Jul. 23, 2015
Foreign Application Priority Data

................................. 2012-142901

(P)

Int. CL.
GO6F 9/46
GO6F 9/52

(2006.01)
(2006.01)

(Continued)
U.S. CL

CPC . GO6F 9/52 (2013.01); GO6F 8/52 (2013.01);
GO6F 9/5011 (2013.01)

(58) Field of Classification Search

(56)

JP
JP
JP

GOG6F 9/52
718/1-108
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
3/2003 Shirasawa GO6T 1/20
712/228

GO6F 8/71
702/123

6,535,971 B1*

6,873,928 B2* 3/2005 Thurman

(Continued)
FOREIGN PATENT DOCUMENTS

1998-289116 A
2007-316710 A
2011-204209 A

10/1998
12/2007
10/2011

OTHER PUBLICATIONS

Liu, Chang, En Ye, and Debra J. Richardson. “Software library
usage pattern extraction using a software model checker.” Auto-
mated Software Engineering, 2006. ASE’06. 21st IEEE/ACM Inter-
national Conference on. IEEE, 2006, pp. 1-4.*

(Continued)

Primary Examiner — Satish Rampuria

&7

ABSTRACT

Provided is to a program conversion device which can use
processor resources of a system to the utmost and enhance
performance ability. The program conversion device
includes: specific process determining unit which deter-
mines a range of a partial program to perform a specific
process in a target program which includes a first execution
scheme specifying program which can be executed in par-
allel with a first ratio of being a usage ratio of a first usage
quantity with respect to a first resource of a first processor
and a second usage quantity with respect to a second
resource of a second processor; and process converting unit
which converts the partial program into a second execution
scheme specifying program which can be executed in par-
allel with a second ratio of being the usage ratio different
from the first ratio.

14 Claims, 19 Drawing Sheets

START

8401 _—

SPECIFIC PROCESS DETERMINING UNIT SEARCHES FOR SPECIFIC PROCESS PART
OF TARGET PROGRAM, AND NOTIFIES PROGESS CONVERTING UNIT OF THE
SEARCHED SPEGIFIC PROCESS PART,

1

s402 _~

PROCESS CONVERTING UNIT GENERATES CONVERTED PROGRAM WHICH
INCLUDES EXECUTION SCHEME. SPECIFYING PROGRAM OF PLURAL EXECUTION
SCHEMES EACH OF WHICH USES DIFFERENT USAGE QUANTITY OF RESOURCE, AND
PROCESS SWITCHING PROGRAM.

1

5408 o~

EXEGUTION SCHEME DETERMINING UNIT SELECTS EXECUTION SGHEME OF
CONVERTED PROGRAM WHICH PROCESSES ONE INPUT DATA, AND NOTIFIES
EXECUTION SCHEME SETTING UNIT OF THE SELECTED EXECUTION SCHEME..

1

s404 _~]

EXEOUTION SCHEME SETTING UNIT NOTIFIES PROCESS SWITCHING UNIT IN
CONVERTED PROGRAM OF THE EXECUTION SCHEME OF WHICH IS NGTIFIED BY
EXECUTION SCHEME DETERMINING UNIT.

US 9,483,324 B2

Page 2
(51) Int. CL 2014/0082614 Al* 3/2014 Klein ..o GOGF 9/45558
GO6F 9/50 (2006.01) 718/1
GO6F 9/45 (2006.01)
OTHER PUBLICATIONS
(56) References Cited

U.S. PATENT DOCUMENTS

7,406,688 B2* 7/2008 Shibayama GOG6F 9/5066
718/101

7,672,236 B1* 3/2010 Karunakaran HO4L 12/4625
370/230.1

7,761,877 B2* 7/2010 Li ..ccooovviviiiniiiiins GO6F 8/45
712/1

2010/0287540 Al* 11/2010 Takai GO6F 9/45512
717/137

2012/0154412 Al 6/2012 Harney et al.

Darlington, John, et al. “Parallel programming using skeleton
functions.” PARLE’93 Parallel Architectures and Languages
Europe. Springer Berlin Heidelberg, 1993, pp. 146-160.*

Kiwior, Diane, and Stephen Zabele. “Active resource allocation in
active networks.” Selected Areas in Communications, IEEE Journal
on 19.3 (2001): pp. 452-459.*

International Search Report for PCT Application No. PCT/JP2013/
003684, mailed on Jul. 9, 2013.

* cited by examiner

US 9,483,324 B2

Sheet 1 of 19

Nov. 1, 2016

U.S. Patent

AHOMLIN
NOILOINNGO

SNLYHYddY d0VvHOIS .

N SNLvYYddVY 30vH01S

SN1vHVddY 3DVHOLS

Ol

L7 201

SNLvdvddy mmwwmwmm<
NOILVYDINNWWOD ooud L
AN
7/
“\
" HILNAWOD
//
AY
€01
001
|61

US 9,483,324 B2

Sheet 2 of 19

Nov. 1, 2016

U.S. Patent

€08 —_

14vd $§3004dd LNd1no

2

Y

02 ~_]

Y02 ~ L

208 ~__

90¢

)

L~ 1dvd avOoT440

LINIWILVLS NOILONYLSNI ONIGNT Qv0O1440

L

ANIWIALVLS NOLLONYLSNI DNILYVLS Gv01d40

)

g0¢

902

)

1dvd avo1440

3

INIWFLVYLS NOTLONY LSNI DNIONI av0T1440

14Vd $S300dd OLLINHLRIY

LNIWILVLS NOLLONYLSNI ONILHVYLS V07440

1dVvd SS3004d LNdNI

)

S0¢

Z'big

US 9,483,324 B2

Sheet 3 of 19

Nov. 1, 2016

U.S. Patent

LINN
ONLLHIANOO SS3004d

cLE

LINA ONINING3 L3
§53004d OI4103dS

LLE

144>

)

Lve

ore

MO1VEIIF00V H0S$3004d LSOH SNLYHVddY NOISHIANOD
F w w ¥ 3 -3 $ F 3
00€ oee 0ze oLg
JUVMAHYH
JHYML40S v y
LINN
- DNILLIS
[INIHOS LINN DNIHOLIMS
cee NOLLNO3X3 $53004d L~
A eve
1INN
(HOLVYITIOOV HO4) ONININYILIA WYHDOUd
WYHD0Yd DNIAJIDALS A~ INTHOS INIAFIDAS WvHDOHd 13Ddv.L
JNIHOS NOLLND3XI Lze NOLLNO3X3 INIHOS N
NOILND3X3 zve
WYHDOHd DNININYILIA
w IWIHOS NOILNOIAXA WYdDOHd GILHIANOD w
¢ b4

US 9,483,324 B2

Sheet 4 of 19

Nov. 1, 2016

U.S. Patent

an3

i

"LINN ONINIAYZLIA JWIHOS NOLLNOIX3
A8 (31H4LLON SI HOIHM 40 IWFHDS NOLLNO3X3E FHL 40 WvdDHO0dd d31H3ANOD
NI LINN DONIHOLIMS SS3D04d SAIHILON LINA DNILLIS FWIHOS NOLLNOIX3

" 0TS

*

"FW3IHOS NOLLND3XT d3L03T3S IHL 40 LINM ONILIIS JWIHOS NOILNO3X3
SAIHILON ANV 'VLvad LNdNI INO S3SSF00Hd HOIHM WYHDOHd A3 LHIANOCD
40 FWIHOS NOILNOAXI S1OTTIS 1INN DONINIWYILIAA IWIHOS NOLLNDIXT

~—"" g0vS

#

WYHD0Hd DNIHOLIMS §53004d
ANV "308N0S3Y 4O ALLLNYND IDVYSN LNIYI44IQ S3SN HOIHM 40 HOVYI SIWIHOS
NOILNOIXT IvdNTd 40 WYdDOHd ONIALIO3dS FWIHOS NOLLNO3XT S3AMNTONI
HOIHM WYdD0dd 03 LYIANOCD SILVHINID LINM DNILYIANGD SS3004d

" Z20vS

*

"1l4V¥d SS300dd JIdID3dS daHOYvES
FHL 40 LINN ONILYIANOD SSTFO0Ud STIHILON ANV ‘WYHD0Hd 13DHVL 40
1d¥d SS3004d OI4I103dS HO4 SIHOUVAS LINA ONININYF 130 SS300Hd DI4103dS

" LOPYS

#

14V1is

Bi-

US 9,483,324 B2

Sheet 5 of 19

Nov. 1, 2016

U.S. Patent

H08S3004d
dOLvy31300v

H0S5300dd
1SOH

J0dNOS3aY J40SS3420dd

H40SS3004Hd d0OSS300Hd
HO1lvy3n3oovy LSOH
e e
....... S | e —
....... | —
R |]
NIDHVYIN

d0SS300dd JOLvd3T1300V ATINC
S3SN HOIHM 3WIHOS NOILNGIXE FdVdadd FANFHOS NOILLNOIXF TVNIDIHO

S1MNdNI
40 AlNvdnid
Vv 31n03X3

0000008

VLiva LNdNI 40 ALTTVHMId Vv

NIDHYI S139 H0SS300Hd LSOH TLLNN I19ISSOdII ST NOILND3X3

llllllllllllll

S1NdNI
40 ALNMYEN1d
Vv 31Nn03X3

500000

—
V1va LNdNI 40 ALTTVENTd ¥

F0HN0S I HOSSIADCHd

GBI

US 9,483,324 B2

Sheet 6 of 19

Nov. 1, 2016

U.S. Patent

SANDI N

<

P T T

&] %
m HO1vy3IT300V Ne—|e
; m d0SS3004Hd 1S0H Y
’ -
Y12 (- el y
H01vy31300Y LSOH
m — m o m
H " ! “ 4 !
i i i m ;
! «——e “ L e !
[N [— ie y V12— tefl y VL2 [—
d401vy31d00V LSOH dOLVvY31300V LSOH HOLVYHI1300V 1SOH

T $§3004d HOLvd31300V

SS300dd LSOH

55300dd J01vd3d 1300V ANV LSOH

9B

US 9,483,324 B2

Sheet 7 of 19

Nov. 1, 2016

U.S. Patent

SANIM N .2

PR
lllllllll
llllll

[NI2 [— ze

d0.1VH3T1300V

1SOH

Ne

R

HOLvH3aTI300V

N1 [— ielly
d01vd3N300V LSOH

/B4

US 9,483,324 B2

Sheet 8 of 19

Nov. 1, 2016

U.S. Patent

aN3

t

JWIHOS
NOILNO3IX3 40 ALIMOd 40 SSANHOIH 40 H3AHO NV NI YIGANN
INIFWLOTTV OL HOV3Y LON S304d NOILNOAX3 13711vHVd 43ANN

208S V1vd $S300dd 40 ¥38WNN ISOHM ‘AW3IHOS NOILNO3IX INIWYI LA
JNIHOS NOILNOIX3I ¥3d ‘NOILNOAXI
LOSS ~ L~ T37IVHVYd H3ANN 34V HOIHM 'V1vd SS3004d 40 439NN 3HINODOV
1HV1S

g b

US 9,483,324 B2

Sheet 9 of 19

Nov. 1, 2016

U.S. Patent

aN3

+0437 Sl
HOSS300dd HOV 40 30HNOS3Y HOSS300Hd

40 ALLLNVNO Q3SNNN

%

H0SS3ID0Yd HOV3 40 31vy g3ISNNN JLvadn L~ bo6s
AISNO3NVLINWIS SISSIO0Hd JWIHOS NOLLNOIX3
@3.19313S IHL HOIHM VLYQ LNdNI 40 43gWNN INIWY3LId
~" €068

JWIHOS NOILNOIXI HOVA 40 F1vd JDVYSN
HOSSIO0Ud ANV 'HOSSIO0OHd HOVYI 40 FLvd AISNNN NO g3asva '319ISSOd
389 OL JININYILIA ST NOILNOIXI ISOHM 40 HOVI SIWIHOS NOILNOIXT

40 LNO ALIHOMd 1SIHDIH FHL SYH HOIHM FWIHOS NOLLND3IXE 19313S "> 206S
%
HOSSIAD0HUd HOVI 40 ALvY QISNNN IZIMYLLINI ONY ‘vY.1va 1NdNI
INO HO4 FANTHIS NOILNOIXI HOVI 40 ALvY IDVYSN HOSSIADOHd
ANV GWIHDS NOLLNO3IXT HOVYA 40 ALINONG 31LVINOIVD N LOBS
1¥v1S .
6614

US 9,483,324 B2

Sheet 10 of 19

Nov. 1, 2016

U.S. Patent

ELOL .

d39NNN LNIFWLIOTIV

ZLOL

FWIHOS NOILLNOIX3 40
NOLLYWHOANI ALIHOIdd

LLOL

17NS3Y LNIFWIUNSYINW
FONYIWHOLH3d

LINM DNLLOTTS
~ A
INTHOS NOILNOFXT 1" > poolL
X r Y
K LINM DNININNFLAA |
m HIGWNN INFWLOTIV N1 ™ go01
\\\\ 7 Y
LINA DNIMNSYIN
...... JONYINHO4YId 1" > zoolL
LINN ONININYTLIA IWIHOS NOLLNDIXT
™ 100 L
01614

US 9,483,324 B2

Sheet 11 of 19

Nov. 1, 2016

U.S. Patent

A and u

LOLLS ~r> -

QOLLE ~ ™

"SWIHOS NCILNDAXT g3.L0TF13S dHL 40 43gWNN LNIWLOTTV
SANIAYILIA LINAT ONINIWE I 130 d39NNN INSWLOTTV

GoLLS

HIGNNN

"LON HO 03xId
38 QINOHS YI8ANN LNIWLGTTV HaHLIHM
SANINEZ 130 1INN DNININYSLIA H39NNN
LNINLOTIV

ANIWNLOTIV 3HL
NG a3svd 1Ndnl
LX3N 40 3W3HOS

FMEYL 1INS3E LNIWNIHNSYAW S0NYIWHOAH3d OL
17INS3H INIFWFEINSYIN SAAV ANV ‘FINLL 1INA ¥3d a3L1nd1ino
HIGWNN STHNSVYIW LINN DNIHNSYIW JONYINHOH3d

~—1" [+t0LLS

NOLLNO3X3

%

SININYIALIT LINN
ONILOA1dS dW3HOS
NOILNOIX3

AWIHOS NOLLNOIXT 93 LD0313S
IHL 40 (1 NVHL 937TVIAS LON 3NTVA) H3GWNN NOLLNOI3X3
S3ASVIHONI LINN DONINIAYFLIA HIEAAN AINFWLOTIVY

~—t ™ e0LLS

ry

a

2t

HAGWNN
INIWLOTTV 3HL

‘ALIHO™—d 40 43040 NV NI ANIHOS

NOLLNOAX3 153138 LINN DONIN

TNEE.L 30 HFGANN LINIWLOTIY

~—" ™20LLS

NO 03svg LNdNI

&

1X3N 40 3W3HOS
NOLLNG3X3
SIANINYILIAA LINN

HIGWNN INTFWLOTIV 20 INTIVA
TYILINI S3NIAY3 130 LINN ONINIWEILIA H38WNN INFWLOTTY

N LOLLS

ONLLO3T3S IWIHOS
NOLLNOAX3

»

m 1Yv1s v

L) Biq

US 9,483,324 B2

Sheet 12 of 19

Nov. 1, 2016

U.S. Patent

5§8¢ 8l 0 o¢ Le
062 8l o 02 9¢
§0¢ L 0] 014 8
081t 0 3 0¢ L
061l 0 o Le 9
00¢ 0 o 0o¢ S
091 0 o 91l L
0St 0 0o Sl (3NTIVA IVILINDO
17nS=y € AW3IHOS ¢ IWIHOS I JIWIHOS
JONVINHO4H3d NOLLNO3X3 NOILNO3AX3 NQILNO3X3 HIFAAN L1NS3u

rANE

US 9,483,324 B2

Sheet 13 of 19

Nov. 1, 2016

U.S. Patent

€0€eL

a0¢e L GoelL coel
i () w
V [e C10] HITIOHLNOD JR—
AHONW3IN _H_ _H_ D _H_
JHOO-ANVIN
HO1lvd3id00v
OoooO
w OO0
YOEL 1SOH
LOEL
¢l b

US 9,483,324 B2

Sheet 14 of 19

Nov. 1, 2016

U.S. Patent

807L

LOVE

o0v1L

SovlL

14804"

eovlL

cOov L

N3N LndLNno
=

6071

Idv SS300dd LNd1lnoO

*

Id¥ ONIONS dv01440

ﬁ

(NOILYINOTIVO HOLO3A)
g SS3004dd NOLLVTINOTIVO

ﬁ

IdV ONILEVLS dv01440

1

(SS300Ud UY10HOS)
vV $S300dd NOILLVINOIVO

t

Id¥ SS3004d 1NdNI

\

374 ONILLES

LOF1L

1014

US 9,483,324 B2

Sheet 15 of 19

Nov. 1, 2016

U.S. Patent

e Y

d01vdd1300V 1SOH

€ IWIHOS NOILNO3IX3

@
Ie Y

d0Lvdd1300v 1SOH

¢ JWIHOS NOILLNO3X3

-3

F-3

d401vdd1300V LSOH

} W3IHOS NOILLNO3X3

Gl B4

US 9,483,324 B2

Sheet 16 of 19

Nov. 1, 2016

U.S. Patent

SHLNOIXI HOLYHITIDOV

J
£3INIHOS |
NOILNO3XT !
40 :
NOLMOdY Y]

S31N33X3A SNLYHYddY NOISHAANOD TING ONININGSL3a
LLE ™ $53004d 01d103dS
¥
LINCUONILHIANOD
[A RN N $53004d
908 L~ WYHOOHd J34.LH3ANOD

S3LNOIXET LSOH

Z 3WIHOS f_
NOLLNO3XT |
40 "
NOLlHOd V!
WYHDOUd
NOLLYNDIS3Q
HOLVHITIOOV

— q mmmm - -
i 1 |
']]

{1 INIHOS |
' NOLLNOAX3 |

AYH50ud

eveE DONIASIOALS INTHOS NOLLNDIX
A o

- v

ere L~

WvHD0Hd
ONIHOLIMS SS300Ud

WYHOOHd J41H3IANOD

WYHDONd 1IDHVL
w ‘aanNssy
ove SI LSOH

A NOLEND3IXT

¥y

)

e

LINA

LINN ONININY313ag HNLLNDIXT AYIHHL ,{\”/ 091
N JW3HOS NOLLNOAX3 [) "
N "
A_‘ LINM DNININONI EN
{7 3wados Nounoaxa [€osl
] LINA DNILL3S |) "
AWIHOS NOLLNDAX3 LIND DNDIOIHG m
viva LOdN T 2091

WvHD0dd DNININGT LA
FWIHOS NOILNOIX3

AVHOOHd NOILNOIX3 TvdNId

US 9,483,324 B2

Sheet 17 of 19

Nov. 1, 2016

U.S. Patent

4
£ AWIAHOS ¢ INIHOS I INIHOS
NOILNO3X3 NOLLNO3AXE NOLLNOIX3

< x P
1
)
)

HONVYE TYNOILIGNOD

/

cqmm-op

1
1
L

L1INM ONILLIS

AYHD0Hd
JILITANOD 40 AVIHHL

WYHOOHd G3LH3ANOD
40 Qv3dHL 31vdINID

JWIHIS NOLLNIIX3

"

A 4

JW3HOS NOLLNDTX3 FHINONI

1INN ONINIWY3L3d
JWIHOS NOLLNOIX3T

NOLLNOIX3
a3axin Hod a3sn
SI HOIHM avy3dHL

V1va LNdNI MO3HO

WYHDOY
NOILLNOAX3
TVHNTId 40 QYIUHL 2B

US 9,483,324 B2

Sheet 18 of 19

Nov. 1, 2016

U.S. Patent

¢0d3Z Sl
d0SS3008d HOVYd 40 30UNOSIY HOSS300Hd

40 ALLLNVND d3ISNNN <_”~ gogls

3 LO8LlS
et |
JW3HOS NOLLNOIXT 3HL 40 VLV
40 HISWNN 38 01 YLVA A3HINDIY 40 HIFNNN ¥ITIVAS 3NINYELIa |~
HOLVHITIO0V ¥O LosLS
1SOH ¥04 'S30HNOST il
40 T1v SNISN ¥O- HOLYHITI0OY ANY LSOH 40 HOV3 HO4 'SI0HNOSTY
J3HINO3Y 39V HOHM 40 TI¥ DNISN HO4 A3MINDIY JdY HOIHM 'YLvd 40 HIENNN ONIH |~
V1vQ 40 YIGWNN aNI4 TosLS

—

9081S

¢401vd371300v
ANV LSOH 40 HL108 3sn

~" go08!S

31V 3IDYSN HOSSID0Hd
ANV HOSS3I00dd HOY3 40 31V G3ISNNN IHL NO g3Isvd 'T18ISSOd
SINOLLNDAX3 1¥HL GANINYILIA 34V HOIHM SIWIHOS NOLLNDIX3 40
Z08LS ~ 1N0 ALIMOIHd 1STHOIH IHL SYH HOHM ‘IWIHOS NOLLNDIXI LOT13S

7'
e

U0SS3I00Ud HOVA 40 31vd G3SNNN
2ZIVILINI ANV 'Y.1vd LNdNI INO HO4 IWIHOS NOILNDIXI HOVI 40 ALVY
LOBLS ~~ 39vsn HOSSIOOUd ONV ‘IWIHOS NOLLNOIXI HOVI 40 ALRIORI ALV INO VO

3)
m 18V1S v 81 Bl

US 9,483,324 B2

Sheet 19 of 19

Nov. 1, 2016

U.S. Patent

¥OSS3I00Hd H0SSI00Yd
HOLVYITIO0Y 1SOH
e E
....... N |
....... | e S
SRR | F— -
NIDYYN

304NO0S3IH HOSS3ID0Md

H0SS3004d
d01vd31300V

H0SS300Hd
1SOH

F0HNOSIY HOSSID0Ud

NIDUVIAN SYH HOSS300dd LSOH TLLNN IT8ISSOdINE ST NOILNO3IXT

S1NdNI 40
ALTIVHN A
Vv 31n03X3

LNdNI 3NO
31N03X3

© 00O

Vivd LNdNI 40 ALINMvENd ¥

61614

US 9,483,324 B2

1
PROGRAM CONVERSION DEVICE AND
METHOD, PROCESS SWITCHING METHOD,
METHOD OF DETERMINING EXECUTION
SCHEME AND PROGRAM STORAGE
MEDIUM THEREFOR, PROCESSOR
SYSTEM, AND PARALLEL EXECUTION
SCHEME

REFERENCE TO RELATED APPLICATION

The present application is a National Stage Entry of:
PCT/IP2013/003684 filed Jun. 12, 2013, which is based on
and claims the benefit of the priority of Japanese Patent
Application No. 2012-142901, filed on Jun. 26, 2012, the
disclosures of all of which are incorporated herein in their
entirety by reference.

TECHNICAL FIELD

The present invention relates to a program conversion
device, a program converting method, a process switching
method, an execution scheme determining method, a pro-
gram, a processor system and a parallel execution scheme
which, in a processor system including a main processor and
a sub processor, make the sub processor execute a portion of
a program executed by the main processor.

BACKGROUND ART

A server system, which includes a main processor and a
sub processor such as General Purpose Graphic Processing
Units (GPGPU), is prevailing. The server system is used
frequently in order to realize high performance, that is, to
make an execution time (hereinafter, called ‘latency’), in
which a program is executed to process single input data or
a set of input data corresponding to an unit of process target,
shortened.

In order to make latency of the program shortened in the
system, a scheme (method) to make the sub processor
execute one or more partial programs, which are included in
a main processor program, is used in some cases (the scheme
is called ‘offload scheme’). A program, which is intended to
be executed by the main processor, is called ‘main program’.
A portion of the main program (partial program), which is
executed by the sub processor according to the offload
scheme, is called ‘offload part’ or ‘offload program’. That the
main processor makes the sub processor execute a program
is called ‘offloading’. That the main processor designates a
program to offload, that is, the main processor designates an
offload part is called ‘offload-designating’.

In general, ‘offload scheme’ is realized by carrying out the
following three procedures.

1) A main processor transfers data to a sub processor to
make the sub processor execute an offload part. A program
code of the offload part is transferred simultaneously at this
time, or is stored in advance in a predetermined storage
apparatus as a sub processor program.

2) The sub processor executes the offload part.

3) The sub processor transfers a result of executing the
offload part to the main processor.

In order to shorten latency of being time to execute the
whole program by the offload scheme, latency of the offload
part, which is executed by the sub processor, is shorter than
one which is executed by the main processor. In general, a
range of the offload part included in the main program is
designated by a person who develops the main program
(hereinafter, simply called ‘program developing person’).

10

30

40

45

50

60

2

In order to shorten the latency, the program developing
person determines the offload part in consideration of a
latency shortening effect which is acquired by using the sub
processor, and a time which is required for transferring data.

In many cases, the program developing person designates
the offload part of the main program by embedding an
instruction statement, which designates a range of the
offload part and the data to be transferred, in the main
program. In order to designate the data to be transferred, the
program developing person must analyze data which the sub
processor requires to process the offload part, and data which
the sub processor transfers to the main processor after
processing the offload part. Since such the data analysis is
difficult in general, it is difficult that the program developing
person designates a desired range of the main program as the
offload part. However, there is a process, in which analysis
on the data to be transferred is easy, such as an input process
which receives data to execute the program, and an output
process which outputs a result of executing the program.

On the other hand, in the case that parallel processes are
carried out by executing a plurality of programs simultane-
ously for a plurality of input data with the offload scheme,
not only the latency but also a large amount of data (here-
inafter, called ‘throughput’) to be processed per an unit time
are required in the system. In order to acquire high through-
put, it is important to use resources of the main processor
and the sub processor efficiently. However, in order to use
the resources of the processor with thorough efficiency, it is
mandatory that a ratio of quantity of the resource per the
processor which is used by the program coincides with a
ratio of quantity of available resource per the processor.
Therefore, even if a plurality of processors execute a pro-
gram, which is created in non-consideration of the parallel
operation, at the same time, it is impossible to use the
resource efficiently. Accordingly, it is impossible to acquire
high throughput even if carrying out the parallel operation to
such the program.

FIG. 19 shows an example of the parallel operation which
causes a problem that a resource of a processor is left and
consequently it is impossible to acquire high throughput.
According to the example, a host processor and an accel-
erator, which supports processes of the host processor as the
sub processor, are arranged. It is assumed that quantity of
resource of the accelerator is larger than one of the host
processor.

In order to execute a partial program which is designated
as the offload part, both of the resource of the host processor
and the resource of the accelerator are required. That is,
when executing the offload part for one input data, the
resource of the host processor and the resource of the
accelerator are used with the same quantity each. Then, if a
difference in the quantity of the resource between the host
processor and the accelerator exists, the following problem
is caused. When executing a program, which uses the
resource of the host processor and the resource of the
accelerator with the same quantity each, for a plurality of
input data, the resource of the host processor cannot be used
any more, and the resource of the accelerator is left. As
mentioned above, the problem that, while the resource of the
accelerator is left, the program cannot be executed for input
data whose number is not smaller than number of the input
data which are being processed at this time is caused.

In general, when executing a plurality of programs, each
of which includes an offload part, in parallel, it is not easy
to use the processor resource effectively. Therefore, various

US 9,483,324 B2

3

kinds of arts are disclosed with respect to selection of the
offload part, and allotment of the processor resource to the
program.

There is a method to determine which processor should
execute respectively loops included in input software (for
example, refer to a patent literature 1). In the art which is
described in the patent literature 1, a time for transferring
data to the accelerator is measured, and a win-loss table,
which indicates superiority-inferiority between execution
times of the host processor and the accelerator, is generated.
Then, a loop which is an offload target is determined based
on the win-loss table, and the input software is converted so
that the loop may be offloaded.

Moreover, there is a method to allot the processor
resource to each of plural programs by a classification of the
program (for example, refer to a patent literature 2). In the
art which is described in the patent literature 2, a real time
program and a non-real time program are separated and
these are allotted to the resource, and consequently a system
can execute a plurality of programs without one program’s
occupying all the resource.

CITATION LIST
Patent Literature

[PTL 1] Japanese Patent Application Laid-Open Publica-
tion No. 2011-204209

[PTL 2] Japanese Patent Application Laid-Open Publica-
tion No. H10(1998)-289116

SUMMARY OF INVENTION
Technical Problem

In the art which is disclosed in the patent literature 1, a
loop whose offloading can bring an effect is detected, and
software is converted so that the detected loop may be
offloaded. However, in the general purpose processor and
the accelerator, the quantity of resource which are required
to processing the loop and the quantity of resource which is
available at the point of time are not taken into consider-
ation. Therefore, there is a possibility that the problem that
the resource of the accelerator is left, and the problem that
it is impossible to carry out offloading due to shortage of the
resource may be caused. Accordingly, even in the case that
the system includes the resource which has more superior
process ability, the system cannot utilize the resource.

In the art which is disclosed in the patent literature 2, the
system can execute a plurality of programs without one
program’s occupying all the resources. In the art of the
patent literature 2, while it is assumed that there are a
plurality of programs which belong to different classifica-
tion, it is not assumed that one common program is executed
in parallel for a plurality of inputs. Accordingly, even if
resource of the processor is left, it is impossible that the
system executes one program in parallel by separating the
resources.

Object of the Invention

The present invention has been conceived in consider-
ation of the above-mentioned technical problem. A main
object of the present invention is to provide a program
conversion device, a program converting method, a process
switching method, an execution scheme determining
method, a program storage medium, a processor system and

25

30

35

40

45

60

4

a parallel execution scheme which are able to use a resource
of a processor included in a system, and to make a process
ability enhanced.

Solution to Problem

A program conversion device of the present invention
includes a specific process determining unit which deter-
mines a range of a partial program to perform a specific
process in a target program which includes a first execution
scheme specifying program which can be executed in par-
allel with a first ratio of being a usage ratio of a first usage
quantity with respect to a first resource of a first processor
and a second usage quantity with respect to a second
resource of a second processor; and

a process converting unit which converts the partial
program into a second execution scheme specifying program
in which the first processor and the second processor operate
simultaneously with a second ratio of being the usage ratio
different from the first ratio and generating a converted
program.

A program converting method of the present invention
includes

determining a range of a partial program to perform a
specific process in a target program which includes a first
execution scheme specifying program which can be
executed in parallel with a first ratio of being a usage ratio
of a first usage quantity with respect to a first resource of a
first processor and a second usage quantity with respect to a
second resource of a second processor; and

converting the partial program into a second execution
scheme specifying program which can be executed in par-
allel with a second ratio of being the usage ratio different
from the first ratio.

A process switching method of the present invention
includes

switching from a first process unit to a second process unit
and vice versa based on a command from outside,

wherein the first process unit operates based on a first
execution scheme which can be executed in parallel with a
first ratio of being a usage ratio of a first usage quantity with
respect to a first resource of a first processor and a second
usage quantity with respect to a second resource of a second
processor, and the second process unit operates based on a
second execution scheme which can be executed in parallel
with a second ratio of being the usage ratio different from the
first ratio.

A non-transitory storage medium of the present invention,
the storage medium stores an execution scheme determining
program which makes a first processor operate as

a first process unit which operates based on a first execu-
tion scheme which can be executed in parallel with a first
ratio of being a usage ratio of a first usage quantity with
respect to a first resource of a first processor and a second
usage quantity with respect to a second resource of a second
processot,

a second process unit which operates based on a second
execution scheme which can be executed in parallel with a
second ratio of being the usage ratio different from the first
ratio, and

a process switch unit which switches from the first
process unit to the second process unit and vice versa based
on a command from outside.

A method of determining execution scheme of the present
invention includes

selecting any one of a first execution scheme which can be
executed in parallel with a first ratio of being a usage ratio

US 9,483,324 B2

5

of a first usage quantity with respect to a first resource of a
first processor and a second usage quantity with respect to a
second resource of a second processor, and a second execu-
tion scheme which can be executed in parallel with a second
ratio of being the usage ratio different from the first ratio;
and

setting the first execution scheme or the second execution
scheme based on the selection result.

A non-transitory storage medium of the present invention,
the storage medium stores a program which makes a first
processor operate as

a execution scheme determining unit which selects, as
execution scheme to executing a specific program, any one
of'a first execution scheme which can be executed in parallel
with a first ratio of being a usage ratio of a first usage
quantity with respect to a first resource of a first processor
and a second usage quantity with respect to a second
resource of a second processor, and a second execution
scheme which can be executed in parallel with a second ratio
of being the usage ratio different from the first ratio, and

a execution scheme setting unit which sets the first
execution scheme or the second execution scheme based on
the selection result.

A processor system of the present invention includes

a first processor which includes a first resource; and

a second processor which includes a second resource,

wherein the first processor operates as

a process switch unit which switches from a first process
unit to a second process unit and vice versa based on a
command from outside, the first process unit operates based
on a first execution scheme which can be executed in parallel
with a first ratio of being a usage ratio of a first usage
quantity with respect to a first resource of a first processor
and a second usage quantity with respect to a second
resource of a second processor, and the second process unit
operates based on a second execution scheme which can be
executed in parallel with a second ratio of being the usage
ratio different from the first ratio, and

a first partial process unit which utilizes the first resource
of the first process unit and the second process unit.

A parallel execution method of the present invention
includes

by a first processor,

switching from a first process unit to a second process unit
and vice versa based on a command from outside, the first
process unit operates based on a first execution scheme
which can be executed in parallel with a first ratio of being
a usage ratio of a first usage quantity with respect to a first
resource of a first processor and a second usage quantity
with respect to a second resource of a second processor, and
the second process unit operates based on a second execu-
tion scheme which can be executed in parallel with a second
ratio of being the usage ratio different from the first ratio,
and

operating as a first partial process unit which utilizes the
first resource of the first process unit and the second process
unit; and

by the second processor,

operating as a second partial process unit which utilizes
the second resource of the first process unit and the second
process unit.

Advantageous Effects of Invention
According to the present invention, a system can execute

one kind of program with plural execution schemes which
are different each other in a usage ratio of processor resource

10

15

20

25

30

35

40

45

50

55

60

65

6

per a processor and can be performed parallel. Therefore,
even in the case of executing one kind of program in parallel,
it is possible to use the processor resource efficiently.
Accordingly, the system which adopts the present invention
can use the resource of the system efficiently and can
enhance process ability.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram showing a configuration of a
computer system in a first exemplary embodiment of the
present invention.

FIG. 2 shows composition of a program in the first
exemplary embodiment of the present invention.

FIG. 3 is a block diagram showing a configuration of a
program executing system in the first exemplary embodi-
ment of the present invention.

FIG. 4 is a flowchart showing an operation of a parallel
process control system in the first exemplary embodiment of
the present invention.

FIG. 5 is a diagram exemplifying a case that a processor
resource, which has not been used, is used in the first
exemplary embodiment of the present invention.

FIG. 6 is a diagram showing an execution scheme which
is set in a second exemplary embodiment of the present
invention.

FIG. 7 is a diagram showing an execution scheme which
is set in a third exemplary embodiment of the present
invention.

FIG. 8 is a flowchart showing an operation to determine
an execution scheme in a fourth exemplary embodiment of
the present invention.

FIG. 9 is a flowchart showing an operation to determine
an execution scheme in a fifth exemplary embodiment of the
present invention.

FIG. 10 is a block diagram showing a configuration of an
execution scheme determining unit in a sixth exemplary
embodiment of the present invention.

FIG. 11 is a flowchart showing an operation of the
execution scheme determining unit in the sixth exemplary
embodiment of the present invention.

FIG. 12 is a diagram showing an example of a manage-
ment table which describes a performance measurement
result in the sixth exemplary embodiment of the present
invention.

FIG. 13 is a block diagram exemplifying a configuration
of'a computer system in a seventh exemplary embodiment of
the present invention.

FIG. 14 is a diagram showing composition of an image
processing program, which includes offload designation, in
the seventh exemplary embodiment of the present invention.

FIG. 15 is a diagram exemplifying an execution scheme
which can be realized by an execution scheme parallel
system in the seventh exemplary embodiment of the present
invention.

FIG. 16 is a block diagram showing composition of a
program which is executed in the execution scheme parallel
system of the seventh exemplary embodiment of the present
invention.

FIG. 17 is a diagram showing each unit which operates as
a thread in a host processor in the seventh exemplary
embodiment of the present invention.

FIG. 18 is a flowchart showing a process flow of an
allotment number determining algorithm in the seventh
exemplary embodiment of the present invention.

US 9,483,324 B2

7

FIG. 19 is a diagram exemplifying a parallel operation in
which a resource of a processor is left.

DESCRIPTION OF EMBODIMENTS

<First Exemplary Embodiment>

Hereinafter, a first exemplary embodiment according to
the present invention will be described in detail with refer-
ence to a drawing.

FIG. 1 shows a configuration of a computer system which
is a target in a first exemplary embodiment. The computer
system is a system including a plurality of computers 100
which are connected each other through a connection net-
work 104. Each computer includes an arithmetic process
apparatus 101, a storage apparatus 102 and a communication
apparatus 103. All of the computers 100 are connected each
other through the connection network 104 and can commu-
nicate each other. Structure of each arithmetic process
apparatus 101, that is, architecture, process performance and
the like may be identical or may be different. One or more
computers 100 work as a host processor, and other comput-
ers 100 work as one or more accelerators. Number of the
accelerators is not limited to one. It is not always necessary
that all of the accelerators have the same architecture or the
same process ability. It is assumed that there are N (N is
integer not smaller than 1) kinds of architecture or N kinds
of process ability.

The accelerator carries out a process according to an
instruction which is received from ‘host processor’. Accord-
ingly, ‘host processor’ is corresponding to ‘main processor’
mentioned above, and ‘accelerator’ is corresponding to ‘sub
processor’ mentioned above. In the first exemplary embodi-
ment, a computer is denoted as ‘host processor’ or ‘accel-
erator’ which is a name expressing a role of the computer.
Then, configurations of these computers will be described in
the following.

A computer system including a plurality of computers
which are connected each other through a bus or a network
is exemplified as a specific example of the first exemplary
embodiment. The bus is a general serial bus or parallel bus
which is used, for example, in a personal computer or the
like. The network is, for example, a wired or wireless LAN
(Local Area Network). However, the computer system in the
first exemplary embodiment is not limited to these
examples.

FIG. 2 shows composition of a target program which is a
process target of the computer system in the first exemplary
embodiment. The target program includes an input process
part 201, an arithmetic process part 202 and an output
process part 203.

As an example of the target program, a Web server
program is exemplified. The Web server program carries out
aprocess in response to each request which is sent by a client
through a network, and returns a result of the process to the
client. At this time, the Web server program uses a standard
function of OS (Operating System) per the request. As a
result, an execution thread or an instance is generated. A
portion of the process, which is carried out by the Web
server program, is designated in the Web server program so
as to be executed by an accelerator which is included in the
server. Here, the Web program is a mere example of the
target program, and the target program is not limited to the
Web server program.

The arithmetic process part 202 includes one or more
offload parts 204 which are designated as a partial program
executed by the accelerator. The offload part 204 has a range
from an offload starting instruction statement 205 to an

10

15

20

25

30

35

40

45

50

55

60

65

8

offload ending instruction statement 206. In the first exem-
plary embodiment, the target program includes the M des-
ignated offload parts (M is integer not smaller than 1).

In the first exemplary embodiment, it is assumed that, in
the computer system shown in FIG. 1, there are L kinds of
execution schemes (L is integer not smaller than L) in which
usage of used processor resources of each processor working
in the target program is different per the processor. As an
example of the plural execution schemes, the following
scheme is exemplified.

1) Execution Scheme to Make Only Host Processor
Operate

The execution scheme is an execution scheme to make
only host processor carry out all processes by neglecting
offload designation.

2) Execution Scheme to Offload a Range from an Input
Process to an Output Process

The execution scheme is an execution scheme to make an
offload target limited to a range from an input process to an
output process.

3) Execution Scheme to Offload Only a Portion of the M
Offload Designation Parts

The execution scheme is an execution scheme to offload
only a portion of the M offload designation parts, and to
neglect other offload designation parts.

4) Execution Scheme to Offload any Portion of the Target
Program

The execution scheme is an execution scheme to execute
a converted program which is generated by predetermined
conversion software so as to be able to offload any portion
of the target program.

FIG. 3 shows a configuration of a program executing
system in the first exemplary embodiment. The program
executing system has a computer system 300 which includes
a conversion apparatus 310, a host processor 320 and an
accelerator 330. Each of the host processor 320 and the
accelerator 330 may be a stand-alone arithmetic apparatus or
may be a portion of an united computer. Moreover, it is
preferable that number of the accelerators 330 is not smaller
than 1, and the number has no limitation. Moreover, in the
case that a plurality of the accelerators 330 exist, it is
unnecessary that these accelerators 330 have the same
architecture.

The conversion apparatus 310 includes specific process
determining 311 and process converting unit 312.

The specific process determining unit 311 determines a
part (called a specific process part) which executes a pre-
determined process designated in a target program 340.
Here, it is assumed that each of the specific process parts is
the offload target. Accordingly, M specific process parts are
designated in the target program 340.

The process converting unit 312 converts the target pro-
gram into a converted program 341 so as to be able to
execute the M specific process parts of the target program
340 with a plurality of execution schemes. Accordingly, the
converted program 341 includes an execution scheme speci-
fying program 342 which is corresponding to each of the L
kinds of execution schemes, and a process switching unit
343. The process switching unit 343 switches an execution
scheme, which should be applied to the execution scheme
specifying program 342, into an execution scheme which is
selected one of the L kinds of execution schemes.

The host processor 320 includes execution scheme deter-
mining unit 321 and execution scheme setting unit 322.

The accelerator 330 receives an accelerator designation
program 344, which is included in the execution scheme
specifying program 342 and is corresponding to the execu-

US 9,483,324 B2

9

tion scheme including the execution by the accelerator, from
the host processor 320. Here, the accelerator 330 has no
necessity to receive the execution scheme specifying pro-
gram 342 corresponding to ‘execution scheme to make only
host processor operate’ mentioned above.

(Operation of the First Exemplary Embodiment)

These units operate as described in the following.

When inputting the target program 340, the specific
process determining unit 311 checks the range, in which it
is possible to carry out offloading in the target program 340,
by searching the range which is interposed between the
specific processes in the target program 340. Then, the
specific process determining unit 311 notifies the process
converting unit 312 of positions of the plural specific
processes in the target program 340.

When inputting the positions of the plural specific pro-
cesses of which are notified by the specific process deter-
mining unit 311, the process converting unit 312 determines
the range, which is interposed between the positions of the
specific processes, to be a range in which it is possible to
carry out offloading (offload enabling area). Then, the pro-
cess converting unit 312 generates, for each offload enabling
area, the execution scheme specifying program 342 of the
execution scheme in the case of carrying out offloading, and
the execution scheme specitying program 342 of the execu-
tion scheme in the case of not carrying out offloading. The
execution scheme specifying program 342 in the case of
carrying out offloading, and the execution scheme specify-
ing program 342 in the case of not carrying out offloading
are different from each other in usage of processor resource.
Furthermore, the process switching unit 312 generates the
converted program 341 which includes the execution
scheme specifying programs 342 of both the schemes, and
the process switching unit 343 to switch between the pro-
grams of both the schemes.

When inputting the converted program 341, the execution
scheme determining unit 321 of the host processor selects
the execution scheme of program for one input data so as to
be able to use the processor resource of each processor
efficiently (to use the processor resource so as to make usage
of unused resource zero).

The execution scheme setting unit 322 notifies the process
switching unit 343, which is included in the converted
program 341, of the execution scheme, which is instructed
by the execution scheme determining unit 321, through a
communication unit (not shown in the figure). The commu-
nication unit is a function, which the computer system 300
has, such as OS which manages an operation of the host
processor.

The target program 340 is a program including the offload
part which is designated to be offloaded by the target
program 340. The target program 340 is converted into the
converted program 341 by the specific process determining
unit 311 and the process converting unit 312.

The converted program 341 is executed with any one of
the execution schemes per the input data. That is, the
converted program 341 is executed after the process switch-
ing unit 343 switches the execution scheme based on the
execution scheme which is designated by the execution
scheme setting unit 322.

FIG. 4 is a flowchart showing an operation of a parallel
process control system of the exemplary embodiment
according to the present invention.

Firstly, the specific process determining unit 311 of the
conversion apparatus 310 searches for a specific process in
the target program 340 in order to check the offload enabling
range in the target program 340. Then, the specific process

15

30

35

40

45

55

60

10

determining unit 311 notifies the process converting unit 312
of positions of the plural specific processes (Step S401)

Next, the process converting unit 312 of the conversion
apparatus 310 recognizes the offload enabling range from
the positions of the plural specific processes of which are
notified by the specific process determining unit 311. Then,
the process converting unit 312 generates, for each the
offload enabling range, both of the partial program in the
case of carrying out offloading, and the partial program in
the case of not carrying out offloading. That is, the process
converting unit 312 prepares a plurality of execution scheme
specifying programs which are different each other usage
quantity of the processor resource. Furthermore, the process
converting unit 312 generates the converted program 341
(Step S402). The converted program 341 includes the pro-
cess switching unit 343 which is a program to switch
between the execution scheme specifying program in the
case of carrying out offloading and the execution scheme
specifying program in the case of not carrying out offload-
ing, and the above-mentioned execution scheme specifying
program.

Next, the execution scheme determining unit 321 of the
host processor 320 determines number of input data, which
should be processed, per the execution scheme among plural
of input data. Then, the execution scheme determining unit
321 selects the execution scheme of the converted program
341, which processes one input data, in order to use the
processor resource of each processor (Step S403).

Finally, the execution scheme setting unit 322 of the host
processor 320 notifies the process switching unit 343, which
is included in the converted program 341, of the execution
scheme, which is designated by the execution scheme deter-
mining unit 321, through the communication unit (Step
S404).

As mentioned above, by the flow in the first exemplary
embodiment, it is possible to generate the converted pro-
gram 341 including the plural execution schemes which are
different in the usage quantity of the processor resource of
each processor. Furthermore, it is possible to realize the
program executing unit which switches the execution
scheme per the input data. Therefore, by selecting the
execution scheme using the processor resource which has
not been used, it is possible to reduce the unused quantity of
the resources to the utmost. FIG. 5 exemplifies a case that,
by virtue of the first exemplary embodiment, more input data
can be processed by using the unused processor resource.

As mentioned above, the computer system in the first
exemplary embodiment can enhance throughput of the sys-
tem by using the processor resource effectively.

In the first exemplary embodiment, it is possible to set
variously the range of the specific area in which it is possible
to offload the target program. Examples of setting the offload
enabling area will be exemplified in a second exemplary
embodiment and a third exemplary embodiment which will
be described later. Specifically, 2) ‘Execution scheme to
offload a range from an input process to an output process’
among the execution schemes mentioned above will be
described as the second exemplary embodiment, and 3)
‘Execution scheme to offload only a portion of offload
designation parts’ among the execution schemes mentioned
above will be described as the third exemplary embodiment.

<Second Exemplary Embodiment>

According to the second exemplary embodiment, the
specific process determining unit 311 determines ‘range
from an input process to an output process’ of the target
program 340 to be the specific process, and determines the
range to be the offload enabling range.

US 9,483,324 B2

11

In the case that the range from the input process to the
output process is the offload enabling range, there are (N+2)
kinds of execution schemes, which are different in the used
quantity of the processor resource of each processor in the
converted program in a first parallel process control system.
As a breakdown of the kinds, there are one kind of the
original execution scheme of the target program 340 which
operates the host processor 320 and the N accelerators 330
in parallel according to a predetermine procedure, one kind
of the execution scheme in which the host processor 320
executes the range from the input process to the output
process, and N kinds of the execution scheme which N kinds
of accelerators execute. FIG. 6 shows an example of plural
execution schemes which are set in the second exemplary
embodiment.

In order to set the specific process as mentioned above, in
Step S401 described in the first exemplary embodiment, the
following is processed in the second exemplary embodi-
ment. That is, in order to check the offload enabling range in
the target program 340, the specific process determining unit
311 searches for the range which is interposed between the
input process and the output process in the target program
340, and notifies the process converting unit 312 of the
range.

In the second exemplary embodiment, it is possible to use
the execution scheme in which each of N accelerators
processes only one offload part. That is, each accelerator has
the execution scheme which can operate independently.
Accordingly, even if only processor resource of one accel-
erator cannot be used efficiently, it is possible to use the
processor resource efficiently by carrying out offloading to
the accelerator.

<Third Exemplary Embodiment>

According to the third exemplary embodiment, the spe-
cific process determining unit 311 determines ‘range to
which offloading is designated’ in the target program 340 to
be the specific process part, and determines the range to be
the offload enabling range. That is, the range to which
offloading has been designated already is the offloading
enabling area.

In this case, if the target program includes the M offload
designation parts, there are (2"M) kinds of the execution
schemes of the program which are different in usage quantity
of the processor resource of each processor. The reason is
that a combination of the execution schemes includes a case
of offloading all of the M offload designation parts up to a
case of not offloading any parts. FIG. 7 exemplifies a
plurality of execution schemes which are set in the third
exemplary embodiment.

In the third exemplary embodiment, in order to set the
specific process as mentioned above, in Step S401 described
in the first exemplary embodiment, the following is pro-
cessed. That is, in order to check the range, to which
offloading is designated, in the target program 340, the
specific process determining unit 311 searches for a set of a
position at which offloading is started, and a position at
which offloading is ended, and notifies the process convert-
ing unit 312 of these positions.

According to the third exemplary embodiment, it is pos-
sible to neglect a portion of the M offload designation parts
in the target program 340 to avoid offloading the portion.
The usage quantity of the processor resource, which is used
in the case of offloading the offload designation part actually,
is different from the usage quantity of the processor resource
which is used in the case of not offloading the offload
designation part. Accordingly, by adjusting number of parts,
which are offloaded actually, among the M offload designa-

10

15

20

25

30

35

40

45

50

55

60

12

tion parts, it is possible to prepare plural kinds of execution
schemes which are different in usage quantity of the pro-
cessor resources. Therefore, the computer system in the third
exemplary embodiment can enhance throughput of the sys-
tem by selecting the execution scheme, which uses the
adequate usage quantity of the resource, and can reduce the
unused resource to the utmost.

Here, it is possible to combine the second exemplary
embodiment and the third exemplary embodiment. That is,
it is possible to combine the original offload execution
scheme for the target program 340 with the execution
scheme of processing the offload part by one of the host
processor and the N accelerators, and the execution scheme
of offloading only a portion of the M offload designation
parts.

The combination increases the kinds of execution scheme.
As a result, the computer system can use the processor
resource, which have not been used, more flexibly and
efficiently, and can make throughput enhanced furthermore.

Meanwhile, in order to enhance throughput, it is also
possible to change number of input data (hereinafter, called
‘allotment number’), which is processed for each execution
scheme, in the first exemplary embodiment to the third
exemplary embodiment. Examples of a method of determin-
ing the allotment number will be exemplified in a fourth
exemplary embodiment to a sixth exemplary embodiment
which will be described later.

<Fourth Exemplary Embodiment>

According to a fourth exemplary embodiment, allotment
number of the input data which are processed simultane-
ously for each execution scheme is determined so as to use
the processor resource of each processor efficiently. Then,
based on the allotment number, the execution scheme for
each input data is determined.

As an example of the method of determining the allotment
number, designation by an user, calculation by using a
predetermined algorithm based on a specification of the
system and a profile result of a program, or the like are
exemplified. ‘Profile’ mentioned above, which is called
‘profile at a time of execution’, is various information on
execution of a program. This information includes a required
execution time, the usage quantity of processor resource or
the like which are necessary information to process a partial
process of a program. Here, in the present invention, the
method of determining the allot number has no limitation
especially.

In order to determine the allotment number, in Step S403
described in the first exemplary embodiment, specifically
the following process is carried out in the fourth exemplary
embodiment. That is, the execution scheme determining unit
321 determines the allotment number of each execution
scheme in an order of highness of priority so as to use the
processor resource of each processor efficiently with high
throughput. Then, the execution scheme determining unit
321 determines the execution scheme of the program for one
input data (Step S403).

FIG. 8 is a flowchart showing an operation which the
execution scheme determining unit 321 determines the allot-
ment number of the execution scheme and afterward deter-
mines the execution scheme for one input data.

Firstly, the execution scheme determining unit 321
acquires number of process data (hereinafter, called number
of simultaneous process data) which are processed simulta-
neously per the execution scheme (Step S801).

Next, the execution scheme determining unit 321 deter-
mines the execution scheme, whose number of simultaneous

US 9,483,324 B2

13

process data does not reach the allotment number, in the
order of highness of priority of the execution scheme (Step
S802).

Finally, in order to realize high throughput, the execution
scheme determining unit 321 determines the allotment num-
ber of each execution scheme, and determines the execution
scheme based on the determined allotment number and the
number of simultancous process data of each execution
scheme during processing, and notifies the execution
scheme setting unit 322 of the determined execution
scheme.

According to the fourth exemplary embodiment, the
execution scheme determining unit 321 determines the allot-
ment number before executing the program. Therefore, it is
unnecessary to determine the allotment number by using the
processor resource during executing the program. The pro-
cess for determining the allotment number is not included in
the target program, and causes influence on throughput
relating in an actual operation. That is, the process for
determining the allotment causes overhead. Then, by deter-
mining the allotment number before executing the program,
it is possible to avoid a status that number of data which the
execution scheme with high priority processes is smaller
than ideal number, and a status that number of data which
the execution scheme with low priority processes is larger
than ideal number, and consequently it is possible to execute
the program in an ideal status. Accordingly, the computer
system in the fourth exemplary embodiment can acquire
optimum throughput by executing the program using the
combination of plural execution schemes.

Here, an user may designate the allotment number in the
converted program so that throughput may become highest.

<Fifth Exemplary Embodiment>

According to a fifth exemplary embodiment, the allotment
number of each execution scheme is determined based on
parameters of the program and the processor. FIG. 9 is a
flowchart showing an operation in which the execution
scheme determining unit 321 determines the allotment num-
ber.

Firstly, the execution scheme determining unit 321 cal-
culates priority of each execution scheme, and a processor
usage rate of each execution scheme for one input data, and
initializes an unused rate of each processor (Step S901)

As an example of a way for calculating the priority of
each execution scheme, it is exemplified that high priority is
allotted in an order of lowness of latency of each execution
scheme, that is, in an order of shortness of an execution time
of the program processing one input data. As an example of
the processor usage rate of each execution scheme for one
input data, a ratio of the execution time of each processor per
unit time is exemplified. A method to set unused rate of each
processor to be 100% as an initial value is exemplified.

Next, based on the unused rate of each processor, and the
processor usage rate of each execution scheme for one input
data, the execution scheme determining unit 321 selects an
execution scheme, which has the highest priority, among the
execution schemes each of which is determined that execu-
tion is possible since the used processor has a margin (Step
S902).

Next, the execution scheme determining unit 321 deter-
mines number of input data which the selected execution
scheme processes simultaneously (Step S903).

As an example of a way for determining the number of
input data, it is exemplified that, for each processor, the
unused rate is divided by the processor usage rate of the
execution scheme for one of input data, and the minimum
division result is defined as the number of input data which

25

30

40

45

14

the selected execution scheme processes simultaneously.
Here, the way for determining the number of input data has
no limitation especially.

Next, the execution scheme determining unit 321 updates
the unused rate of each processor (Step S904). That is, the
execution scheme determining unit 321 calculates the pro-
cessor usage rate in the case that number of the input data,
which is determined in Step S903, are processed with the
selected execution scheme. The execution scheme determin-
ing unit 321 subtracts the calculated processor usage rate
from the unused rate of the processor, and defines the
subtraction result as an updated unused rate of the processor.

Finally, the execution scheme determining unit 321 deter-
mines whether all of the unused quantity of each processor
are zero (Step S905). In the case that all of the unused rate
of each processor is zero, execution of the allotment number
determining algorithm is ended. On the other hand, in the
case of not zero, the procedure transits to Step S902.

According to the fifth exemplary embodiment, the allot-
ment number is calculated automatically based on the
parameter of the processor and the parameter of the target
program. It is possible to execute the process for calculating
the allotment number before executing the program. There-
fore, a process to determine the allot number by using the
processor resource during executing the program is unnec-
essary. Accordingly, the computer system has the same
effect as that in the fourth exemplary embodiment, that is, it
is possible to acquire optimum throughput by executing the
program using the combination of plural execution schemes

<Sixth Exemplary Embodiment>

According to a sixth exemplary embodiment, a temporary
allotment number is determined and an execution scheme is
selected based on the temporary allotment number.

FIG. 10 is a block diagram showing a configuration of an
execution scheme determining unit 1001 in the sixth exem-
plary embodiment.

The execution scheme determining unit 1001 includes
performance measuring unit 1002, allotment number deter-
mining unit 1003 and execution scheme selecting unit 1004.
Moreover, as information exchanged among these unit, there
are a performance measurement result 1011, an execution
scheme’s priority information 1012 and allotment number
1013 which is corresponding to the number of input data
which are processed with each execution scheme.

FIG. 11 is a flowchart showing an operation of the
execution scheme determining unit 1001 in the sixth exem-
plary embodiment. FIG. 12 is an example of the manage-
ment table of the performance measurement result used in an
operation which is carried out in the case of preparing three
kinds of execution scheme.

Firstly, the allotment number determining unit 1003 deter-
mines an initial value of the allotment number (Step S1101).
The execution scheme selecting unit 1004 selects the execu-
tion scheme for an input based on the determined allotment
number. Then, execution of the converted program 341 is
started.

Next, the allotment number determining unit 1003 selects
the execution scheme, whose allotment number has not been
fixed, based on the priority information of the execution
scheme (Step S1102).

The allotment number determining unit 1003 increases
the allotment number of the selected execution scheme (Step
S1103). The execution scheme selecting unit 1004 selects
the execution scheme for an input based on the current
allotment number which has been increased. Then, any one

US 9,483,324 B2

15

of three kinds of the execution scheme specifying program
342, which are included in the converted program 341, is
executed.

Performance measuring unit 2301 measures throughput
performance per unit time, and adds the measurement result
to the management table which includes a set of the allot-
ment number of each execution scheme and the throughput
performance (Step S1104).

The allotment number determining unit 1003 determines
whether the allotment number should be fixed (Step S1105).
In the sixth exemplary embodiment, it is assumed that a
condition (hereinafter, called allotment number fixation con-
dition) of fixing the allotment number is that ‘performance
measurement result, which is acquired when the target
execution scheme is increased, is degraded in comparison
with the performance measurement result acquired before
the increase’. However, the allotment number fixation con-
dition may be to fix the allotment number when addition or
deletion of the performance measurement result is gener-
ated. Accordingly, the allotment number fixation condition is
not limited to the above-mentioned condition.

Then, in the case that the performance measurement result
satisfies the allotment number fixation condition, and con-
sequently the allotment number is fixed, the procedure
transits to Step S1106, and in the case that to fix the
allotment number is not determined, the procedure transits
to Step S1103.

Next, the allotment number determining unit 1003 fixes
the allotment number of the selected execution scheme (Step
S1106). In the sixth exemplary embodiment, when the
performance measurement result is the same as performance
measurement result which is acquired before the allotment
number is increased, the increased allotment number is fixed
as the allotment number of the selected execution scheme.

Finally, the allotment number determining unit 1003
determines whether the flow to determine the allotment
number dynamically is ended (Step S1107). In the sixth
exemplary embodiment, in the case that a condition that all
of the allotment number of each execution scheme are fixed
is satisfied, the flow is ended, and in the case that the
condition is not satisfied, the procedure transits to Step
S1102.

By the above-mentioned operation of the allotment num-
ber determining unit 1003, the allotment number of each
execution scheme is determined and it is possible to execute
the program based on the allotment number.

In order to understand the operation of the execution
scheme determining unit 1001 in the sixth exemplary
embodiment, a process flow shown in FIG. 11 will be
described in the following with indicating a specific value.

Firstly, the allotment number determining unit 1003 deter-
mines an initial value of the allotment number (Step S1101).
In the sixth exemplary embodiment, as the initial value of
the allotment number, the allotment number determining
unit 1003 sets ‘15°, <0’ and ‘0’ to an execution scheme 1, an
execution scheme 2 and an execution scheme 3 respectively.
The execution scheme selecting unit 1004 selects the execu-
tion scheme for an input based on the set allotment number.
Then, execution of an application is started.

Next, the allotment number determining unit 1003 selects
the execution scheme, whose allotment number has not been
fixed, based on the priority information of execution scheme
(Step S1102). In the sixth exemplary embodiment, the
execution scheme 1 is selected in order to fix the allotment
number of the execution scheme 1 which has the highest
priority.

35

40

45

55

60

16

The allotment number determining unit 1003 increases
the allot number of the selected execution scheme (Step
S1103). In the sixth exemplary embodiment, the allotment
number is increased by 1. The execution scheme selecting
unit 1004 selects the execution scheme for an input based on
the current allotment number which is increased. Then, an
application is executed.

The performance measuring unit 1001 measures through-
put performance per unit time, and adds the measurement
result to the management table (Step S1104). In the sixth
exemplary embodiment, the throughput performance to be
measured is defined as number of data which are outputted
per one second. However, the performance to be measured
is not limited to the throughput. As the performance value
acquired when carrying out a process in an initial state in
which the allotment number of each the execution scheme 1,
2 and 3 is ‘157, ‘0’ and ‘0’ respectively, ‘150’ is written in
the management table in the sixth exemplary embodiment.

The allotment number determining unit 1003 determines
whether the allotment number should be fixed (Step S1105).
In the sixth exemplary embodiment, the allotment number
fixation condition is that the performance measurement
result, which is acquired when the target execution scheme
is increased, is degraded in comparison with the perfor-
mance measurement result acquired before the increase.

In the case that fixation of the allotment number is
determined, the procedure transits to Step S1106, and in the
case that fixation of the allotment number is not determined,
the procedure transits to Step S1103. In the sixth exemplary
embodiment, as shown in the management table of FIG. 12,
the performance result is degraded from ‘200° to ‘190’
between result number 5 and result number 6. Accordingly,
when a process corresponding to the result number 6 is
carried out, the procedure transits to Step S1106.

In Step S1106, the allotment number determining unit
1003 fixes the allotment number of the selected execution
scheme. In the sixth exemplary embodiment, when the
performance measurement result is the same as performance
measurement result which is acquired before the allotment
number is increased, the increased allotment number is fixed
as the allotment number of the selected execution scheme. In
the sixth exemplary embodiment, the allotment number
determining unit 1003 fixes in ‘20’ as the allotment number
of the execution scheme 1 based on the management table
shown in FIG. 12.

Finally, the allotment number determining unit 1003
determines whether the flow to determine the allotment
number dynamically is ended (Step S1107). In the exem-
plary embodiment, in the case that the condition that all of
the allotment number of each execution scheme are fixed is
satisfied, the flow is ended, and in the case that the condition
is not satisfied, the procedure transits to Step S1102.

In the sixth exemplary embodiment, the allotment number
which can produce high throughput during executing is
searched for. Accordingly, the computer system in the sixth
exemplary embodiment can determine the allotment number
without parameters of the processor and the target program.

<Seventh Exemplary Embodiment>

A specific computer system is exemplified as a seventh
exemplary embodiment.

FIG. 13 shows a configuration of a computer system
including a multi-core which is corresponding to the host
processor, and a many-core which is corresponding to the
accelerator.

The computer system of the seventh exemplary embodi-
ment includes a host processor 1301, a host memory 1302,

US 9,483,324 B2

17

a bus controller 1303 and an accelerator 1304. The accel-
erator 1304 includes a many-core 1305 and a memory 1306
internally.

The host processor 1301 and the many-core 1305 are
different each other in architecture and number of built-in
CPUs (Central Processing Unit). Since the host processor
1301 and the many-core 1305 are different each other in
structure and number of arithmetic units, the host computer
1301 and the many-core 1305 have a relatively favorite
process and an relatively un-favorite process.

In the seventh exemplary embodiment, the host processor
1301 includes 8 CPUs and the many-core 1305 includes 40
CPUs. Moreover, CPU of the host processor 1301 and CPU
of the many-core 1305 are different each other in perfor-
mance which is acquired when executing a vector operation
and a scalar operation. For example, when assuming that
performance of one CPU in the host processor 1301 for a
scalar operation is 1, the performance of one CPU in the
many-core 1305 for the scalar operation is 0.25. Accord-
ingly, CPU of the host processor 1301 has higher perfor-
mance than CPU of the many-core 1305 has. Moreover,
when assuming that performance of one CPU in the host
processor 1301 for a vector operation is 1, performance of
one CPU in the many-core 1305 for the vector operation is
2. Accordingly, CPU of the many-core 1305 has higher
performance than CPU of the host processor 1301 has.

The host processor 1301 and the accelerator 1304 are
connected each other via the bus controller 1303.

With respect to software, OS used for the host processor
and OS used for the accelerator operate independently.
Communication between the host processor 1301 and the
accelerator 1304 is realized by a general art such as a socket
or the like.

There is a function that the host processor 1301 instructs
the accelerator 1304 to start carrying out a process in order
to realize execution of offload. Moreover, each of the host
processor 1301 and the accelerator 1304 has a specific IP
(Internet Protocol) address.

FIG. 14 is a composition diagram showing an image
processing program, which includes offload designation, for
one input in the seventh exemplary embodiment.

The target program 340 includes an input process API
(Application Program Interface) 1403, a calculation process
A 1404, an offload starting API 1405, a calculation process
B 1406, an offload ending API 1407 and an output process
API 1408.

An input queue 1401 includes image data at the time the
target program 340 is started to execute. An execution
parameter of the program such as a command line argument
or the like is provided in a setting file 1402. By the target
program 340, necessary information is read out from the
input queue and the setting file 1402, and a process result is
output to an output queue 1409. An operation according to
each component included in the target program 340 will be
described in the following.

In the input process API 1403, information which is
required for executing the program is set by acquiring the
execution parameter from the setting file 1402 and acquiring
the image data from the input queue 1401.

A mechanism which acquires data from the input queue
by the input process API 1403 will be described in the
following. That is, a management thread of the input queue
1401 in the host processor 320 sends the data of the input
queue 1401 to program with the socket. Then, the input
process API 1403, which is executed by a program thread,
receives the data with the socket.

10

15

20

25

30

35

40

45

50

55

60

65

18

The input process API 1403 receives the command line
argument and sets data which is required for executing the
program. Therefore, the data which is required for executing
the program is only the command line argument.

The calculation process A 1404 executes a process, which
uses the information set by the input process API 1403 as
input, with a scalar operation process which is included in
the target program 340.

The offload starting API 1405 designates a starting point
of offloading from the host processor 320 to the accelerator
330, and data which is transferred from the host processor
320 to the accelerator 330.

The calculation process B 1406 executes a process, which
uses an intermediate result acquired from the calculation
process A 1404, with a vector operation process which is
included in the target program 340.

The offload ending API 1407 designates an ending point
of offloading from the host processor 320 to the accelerator
330, and data which is transferred from the host processor
320 to the accelerator 330.

The output process API 1408 adds a result of the calcu-
lation process B to the output queue 1409.

A mechanism by which the output process API 1408 adds
data to the output queue 1409 will be described in the
following. That is, the output process API 1408, which is a
program thread, sends data with the socket. Then, a thread
which is executed by the host processor receives data with
a socket, and adds the data to the output queue 1409.

The output process API 1408 receives only result data as
an argument, and writes the result data in the output queue.
Therefore, there is no data which the output process API
1408 generates.

A ratio of an execution time of each of the input process
API and the output process API to an execution time of the
whole program is negligibly small. Moreover, a ratio of an
execution time of the calculation process A 1404 is 40%, and
a ratio of an execution time of the calculation process B
1406 is 60%.

Both of the calculation process A and the calculation
process B can be executed by either the host processor 320
or the accelerator 330. In the seventh exemplary embodi-
ment, both of a compiler used for the host processor 320 and
a compiler used for the accelerator 330 are prepared. There-
fore, in the computer system in the seventh exemplary
embodiment, it is possible that a processor which executes
one program generates two kinds of execution file different
each other based on that program.

The input process API 1403 realizes to acquire data from
the input queue 1401 by using the socket. Therefore, either
the host processor 320 or the accelerator 330 can execute the
calculation process.

The output process API 1408 realizes to output data into
the output queue 1409 with the socket. Therefore, either the
host processor 320 or the accelerator 330 can execute the
process.

In the seventh exemplary embodiment, the execution
scheme 2 is prepared as the execution scheme to allot the
processors for executing the program. This execution
scheme 2 is different from the execution scheme 1 which is
an original execution scheme. In the case that the execution
scheme is different, the usage quantity of the resource of
each processor is different. Therefore, by executing in par-
allel for a plurality of input data with a plurality of the
execution schemes, it is possible to reduce excessive
resources to the utmost. Accordingly, the computer system
can enhance throughput of the whole system. Hereinafter,
the system which executes in parallel the execution schemes

US 9,483,324 B2

19

different each other is called ‘execution scheme parallel
system’. Moreover, the host processor 320 and accelerator
330 are called merely ‘host” and ‘accelerator’ respectively.

FIG. 15 shows an example of plural execution schemes of
the program which can be realized in the execution scheme
parallel system.

‘Execution scheme 1’ is the execution scheme of an
original program which includes offload designation, and a
portion of the program is offloaded from the host to the
accelerator. In the execution scheme 1, a process is carried
out according to the following flow.

Firstly, on the host side, the input API and the calculation
process A are executed. Then, the host executes the offload
starting API, and the host transfers data to the accelerator.

Next, on the accelerator side, the calculation process B is
executed. Then, the accelerator executes the offload ending
API, and the accelerator transfers data to the host.

Finally, on the host side, the output API is executed.

In the execution scheme 1, both of the processor resources
of the host and the accelerator are used for one input. Here,
in the seventh exemplary embodiment, ‘one input data’
means a single or a set of input data which is unit of process
target.

Next, ‘execution scheme 2’ is an execution scheme that a
whole of program is executed on the host side. In the
execution scheme 2, all of the input APL the calculation
process A, the calculation process B and the output API are
executed on the host side.

The execution scheme 2 is realized by neglecting the
offload designation part of the program by using a general art
such as a compiler. In the execution scheme 2, only resource
of the host is used for one input data.

Finally, ‘execution scheme 3’ is an execution scheme that
all of processes defined in the program are executed on the
accelerator side. But, it is necessary that the host processor
instructs the accelerator to start the process. In the execution
scheme 3, all of the input API, the calculation process A, the
calculation process B and the output API are executed on the
accelerator side.

The execution scheme 3 is realized by converting the
target program into the execution scheme specifying pro-
gram 342 including the offload part which is not the offload
designation part but a range from the input process API to
the output process API with the conversion apparatus 310
using the general art. It is known that data transfer infor-
mation, which is required to offload the range from the input
process API to the output process AP, is only the command
line argument because of using the specified APIL. In the
execution scheme 3, only the processor resource of the
accelerator is used for one input. By changing designation of
the accelerator which is an offload destination, it is possible
to realize the execution scheme 3 also in the case that there
are plural kinds of accelerator.

FIG. 16 shows an example of composition of various
programs 1600 (hereinafter, called ‘program group’) which
are used in the execution scheme parallel system of the
seventh exemplary embodiment, and relation among the
programs which are included in the program group 1600.

6 programs which are included in the program group 1600
are classified into the following four categories.

1) Program which is Inputted as a Process Target

The target program 340 is a target program which is
processed by the execution scheme parallel system. The
target program 340 is a program in which the host processor
320 offloads based on the execution scheme 1 is assumed.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

The target program 340 is inputted into the conversion
apparatus 310 and is converted to the converted program
341.
2) Program which is Executed by the Conversion Apparatus
310

A conversion program 1606 is executed by the conversion
apparatus 310, and converts the target program 340 into the
converted program 341.

The conversion program 1606 includes the specific pro-
cess determining unit 311 and the process converting unit
312. The specific process determining unit 311 and the
process converting unit 312 are functions of software which
converts the program.

The conversion apparatus 310 executes the conversion
program 1606, and adds information on existence or non-
existence of offload, or programs of the three kinds of
execution scheme, whose forms are different each other, to
generate the converted program 341. That is, the conversion
apparatus 310 generates the converted program 341, which
includes the execution scheme specifying programs 342
which are executed with the execution schemes 2 and 3
whose offload forms are different each other. The execution
scheme specifying program 342 is executed by the host
processor 320 and/or the accelerator 330.

Furthermore, the converted program 341 includes the
process switching unit 343 which is realized by a conditional
branch.

3) Program which is Executed by the Host Processor 320

The converted program 341, a plural execution program
1601 and an execution scheme determining program 1605,
which are executed by the host processor 320, control a
whole of offload in the execution scheme parallel system.

The execution scheme determining program 1605
includes the execution scheme determining unit 321 and the
execution scheme setting unit 322. The execution scheme
determining unit 321 and the execution scheme setting unit
322 are functions of the daemon thread.

The plural execution program 1601 includes input data
checking unit 1602, execution scheme inquiring unit 1603
and thread executing unit 1604. The thread executing unit
1604 generates a thread by thread generating unit (not
shown in the figure), which a general OS has, in order to
execute the plural execution program 1601. Information
exchange between the plural execution program 1601 and
the execution scheme determining program 1605 is carried
out through communication unit (not shown in the figure)
which a general OS has.

The host processor 320 selects the execution scheme per
input data by the plural execution program 1601 and the
execution scheme determining program 1605. Then, the host
processor 320 executes the program corresponding to the
selected execution scheme among the execution scheme
specifying programs 342 which are included in the con-
verted program 341. In the case that the selected execution
scheme is the scheme which the accelerator 330 uses, the
host processor 320 makes the accelerator execute the accel-
erator designation program 344 which is the offload part to
the accelerator
4) Program which is Executed by the Accelerator 330

The accelerator designation program 344 is a program
which is offloaded by the host processor 320 and is executed
by the accelerator 330.

Next, an operation of the execution scheme parallel
system in the seventh exemplary embodiment will be
described. FIG. 17 shows a status that each unit works as the
thread in the host processor 320. An operation of each thread
will be described later.

US 9,483,324 B2

21

The operation of the execution scheme parallel system
1600 is divided into two phases of (1) phase to generate the
converted program from the target program, and (2) phase to
execute the converted program with changing the execution
scheme.

(1) Phase to Generate the Converted Program from the
Original Program

The converted program is generated from the target
program by the specific process determining unit and the
process converting unit.

The specific process determining unit 311 searches for
positions of the input process API and the output process
API of the target program in a program source, and notifies
the process converting unit 312 of the positions of the input
process API and the output process API (Step S401).

Based on a the positions of the input process API and the
output process API of which the specific process determin-
ing unit 311 notifies, the process converting unit 312 sets the
range from the input process API to the output process API
as the offload enabling range. Then, the process converting
unit 312 generates the execution scheme specifying pro-
grams 342, which are executed with the three kinds of
execution schemes mentioned above, by copying the pro-
gram within the offload enabling range and adding or
deleting the offload starting API and the offload ending API.

Specifically, the execution scheme specifying program
342 of the execution scheme 1 is realized by deleting a
program which ranges from a process just after the offload
starting API to a process just before the offload ending API,
that is, a program included in the offload enabling range with
the process converting unit 312.

The execution scheme specifying program 342 of the
execution scheme 2 is realized by using the target program
as it is. Here, in the case of the execution scheme specifying
program 342 of the execution scheme 2, offload is not
carried out actually. But, in order to handle the execution
scheme specifying program 342 of the execution scheme 2
similarly to ones of the other execution schemes, the execu-
tion scheme specifying program 342 of the execution
scheme 2 is called the offload program.

In order to generate the execution scheme specifying
program 342 of the execution scheme 3, firstly, the process
converting unit 312 deletes the offload starting API and the
offload ending API which are included in the offload
enabling range. Next, in order to designate the range from
the input process API to the output process API as the offload
part, the process converting unit 312 designates data which
the input process API requires, and adds the offload starting
API just before the input process API. Furthermore, the
process converting unit 312 designates data which the output
process API outputs, and adds the offload ending API just
after the output process APIL. By carrying out the above-
mentioned process, the execution scheme 3 is realized.

Based on the target program 340, the converted program
341, which includes the three kinds of execution scheme of
the execution scheme specifying programs 342 and the
process switching unit 343 switching the three kinds of
execution scheme with the conditional branch, is generated
(Step S402). Here, a condition, which is related to the
conditional branch, is notified by the execution scheme
setting unit 321 through socket communication when
executing the converted program 341.

(2) Phase to Execute the Converted Program with Switching
the Execution Scheme

The plural execution program 1601, which includes the
converted program 341, is executed while being switched

10

20

30

40

45

55

65

22

the execution scheme by the execution scheme determining
unit 321 and the execution scheme setting unit 322.

A thread of the plural execution program 1601 and a
thread to execute the execution schemes in parallel enter into
an execution state.

The plural execution program 1601 checks whether the
input queue 1401 holds data. In the case that the input queue
does not hold any data, the plural execution program 1601
enters into a waiting status until new data comes into the
input queue 1401.

The execution scheme inquiring unit 1603 inquires to the
execution scheme determining unit 321 about the thread to
execute the execution schemes in parallel. The socket com-
munication is used for the inquiry.

Firstly, based on parameters of the program and the
system, the execution scheme determining unit 321 deter-
mines the allotment number of each execution scheme by
use of the allotment number determining algorithm.

Next, the execution scheme determining unit 321 selects
the execution scheme, whose number of input data, which
are currently under execution, does not reach the allotment
number which has been determined already, in an order of
highness of priority of each execution scheme, and deter-
mines the selected execution scheme to be the execution
scheme of the program for one input data. The allotment
number determining algorithm will be described later.

The execution scheme setting unit 322 notifies the execu-
tion scheme inquiring unit 1603 of the execution scheme
which the execution scheme determining unit 321 instructs.
The socket communication is used for the notice.

The execution scheme inquiring unit 1603 sets the noti-
fied execution scheme as a variable number.

The thread executing unit 1604 generates the thread in
order to execute the converted program 341 for one input
data. When generating the thread, the thread executing unit
1604 provides the variable number, which is set by the
execution scheme inquiring unit 1603, as the argument.

In the thread of the converted program 341, the offload
program is executed based on the variable number of which
is notified by the thread executing unit 1604 in a form of the
argument and which indicates the execution scheme, and the
execution scheme which is designated by the process
switching unit 343 realized by the conditional branch.

In the seventh exemplary embodiment, allotment number
of data to be processed is determined per the execution
scheme by the execution scheme determining unit 321, and
the execution scheme for each data is determined based on
the allotment number of data. A flow of the allotment
number determining algorithm will be described in the
following.

FIG. 18 is a flowchart showing a process flow of the
algorithm.

The execution scheme determining unit 321 sets priority
to each execution scheme in an order of smallness of latency,
and all of the unused rate of each processor resource is set
to be 100% (Step S1801).

In the seventh exemplary embodiment, the priority is set
in the order of smallness of latency of the execution scheme.
Since it is conceivable that it is possible to almost neglect a
time which is required for transferring data, it is assumed
that latency of each execution scheme is acquired by adding
latency of the calculation process A which carries out the
scalar operation and whose execution time occupies 40% of
the execution time of the whole program, and latency of the
calculation process B which carries out the vector operation
and whose execution time occupies 60% of the execution
time of the whole program. Here, with respect to the scalar

US 9,483,324 B2

23

operation process, a ratio of performance of the host pro-
cessor 320 to performance of the accelerator 330 is 4 to 1.
Moreover, with respect to the vector operation process, the
ratio of performance of the host processor 320 to perfor-
mance of the accelerator 330 is 1 to 2.

In the seventh exemplary embodiment, ‘latency’ of one
execution scheme is defined as a ratio of an execution time
which is required when process a program, which processes
one input data, with the execution scheme to an execution
time which is required when the host processes a whole of
the program. At this time, in the case of the execution
scheme 1, an execution time of the host is 0.4 which is
acquired by calculating 0.4+1.0, and an execution time of
the accelerator is 0.3 which is acquired by calculating
0.6+2.0. Then, latency of the execution scheme 1 is 0.7
which is acquired by adding 0.4+0.3.

The latency of the execution scheme 2 is 1.0 since the host
processor 320 carries out all of processes.

The latency of the execution scheme 3 is 1.9 by calcu-
lating 0.4+0.25+0.6+2.0.

Therefore, the priority is high in an order of the execution
scheme 1, the execution scheme 2 and the execution scheme
3.

Next, the execution scheme determining unit 321 selects
the execution scheme holding the highest priority among the
execution schemes which do not use the program in which
the unused rate of the processor resource is zero, that is, the
program in which all processor resource is used (Step
S1802). Since the unused rates of the host and the accel-
erator are 100% in this case, all of the execution scheme 1
to the execution scheme 3 are the target of selection. Since
the execution scheme 1 has the highest priority among these
execution schemes, the execution scheme determining unit
321 selects the execution scheme 1.

The execution scheme determining unit 321 determines
whether the selected execution scheme is the execution
scheme, which uses both of the processor resource of the
host and the processor resource of the accelerator (Step
S1803). In the case of the execution scheme which uses
both, the procedure advances to Step S1804, and in the case
of the execution scheme which uses either, the procedure
advances to Step S1806. Since the execution scheme 1 uses
the processor resources of the host and the accelerator, the
procedure advance to Step S1804.

The execution scheme determining unit 321 finds number
of input data for which the processor resource of each of the
host and the accelerator is used efficiently (Step S1804).
Since the host and the accelerator are used in the case of the
execution scheme 1, the execution scheme determining unit
321 finds number of input data (hereinafter, called ‘number
of required data’) for which the processor resource of each
of the host and the accelerator is used efficiently. The
number of input data is found by calculating (number of
input data to be processed by one core per unit time)x
(number of cores).

Here, it is assumed that ‘unit time’ is a process time
required in the case that the host executes whole of the
program.

In the execution scheme 1, since the host executes the
scalar operation which occupies 40% of the program, one
core can process 1+0.4=2.5 data per the unit time. In the
seventh exemplary embodiment, since number of built-in
cores of the host is 8, number of required data, for which the
processor resource of the host is used efficiently, is 2.5x
8=20.

Next, in the execution scheme 1, since the accelerator
executes the vector operation which occupies 60% of the

10

15

20

25

30

35

40

45

50

55

60

65

24

program, one core can process 1.0+(0.6+2)=3.33 data per
the unit time. Since number of cores is 40, number of
required data, for which the processor resource of the
accelerator is used efficiently, is 3.33x40=133.33 data.

The execution scheme determining unit 321 determines
smaller number of required data among the number of
require data for which the unused processor resource of the
host is used efficiently as number of data of the execution
scheme (Step S1805). Since it is determined based on the
result which is acquired in Step S1804 that the smaller
number of required data is 20 for the host, it is determined
that the execution scheme 1 processes 20 input data.

The execution scheme determining unit 321 updates the
number of unused processor resources of each computer
(Step S1807). In the case of the execution scheme 1, since
all processor resource of the host is used efficiently by
process the 20 data, the number of unused processor
resource of the host becomes zero. Since 133.33 data are
required in order to use the accelerator efficiently, the usage
quantity of the processor resource of the accelerator is 15%
which is acquired by calculating 20+133.33. Based on the
above mention, the unused quantity of the processor
resource of the host is updated to 0%, and the unused
quantity of the processor resource of the accelerator is
updated to 85%.

In the case that all of the unused quantity of the processor
resource of each computer is zero, the data number deter-
mining flow is ended, and in the case of not zero, the
procedure advances to Step S1802 (Step S1808). Taking the
above-mentioned result into consideration, since the unused
quantity of the processor resource of the accelerator is not
zero, the procedure advance to Step S1802.

In Step S1802, since the computer, whose the unused
quantity of the processor resource is not zero is only the
accelerator, the execution scheme 3, in which all of the
processes are executed by the accelerator, is selected

In Step S1803, since the execution scheme 3 uses only the
accelerator, the procedure advances to Step S1806.

The execution scheme determining unit 321 determines
number of required data in order to use efficiently the
program which should be used, that is, the processor
resource of the accelerator in this case.

In the execution scheme 3, number of required data for
which all processor resource of the accelerator is used
efficiently is 21.05 based on a calculation of 1.0+1.9x40.
Since the unused quantity of the processor resources is 85%,
number of data which can be processed by excessive pro-
cessor resource of the accelerator is determined to be 17.9
data which is acquire by calculating 21.05x0.85. When the
number of required data is determined, the procedure
advances to Step S1807.

In Step S1807, since the processor resource of the accel-
erator is used efficiently by process 17.9 data with the
execution scheme 3, number of unused processor resources
of the accelerator becomes zero.

By carrying out the above-mentioned process, both the
unused quantity of the processor resources of the host and
the accelerator become zero, and then the execution scheme
allotment number algorism is ended.

Based on the result mentioned above, it is determined that
number of processed data in the case of the execution
scheme 1 is 20, and number of processed data in the case of
the execution scheme 2 is 0, and number of processed data
in the case of the execution scheme 3 is 17.9. As mentioned
above, in the seventh exemplary embodiment, it is possible
to process 37.9 input data by using all processor resource.

US 9,483,324 B2

25

An effect of the seventh exemplary embodiment will be
described in the following. In the seventh exemplary
embodiment, the computer system can prepare the plural
execution schemes by converting the program as shown in
FIG. 17, and can switch the execution schemes per the input
data. While the computer system processes only 20 data per
the unit time in the case of the execution scheme 1 which is
the execution scheme in the usual offload, the computer
system of the seventh exemplary embodiment can process
37.9 data per the unit time since it is possible to use the
unused processor resource of the accelerator efficiently by
determining the allotment number. As mentioned above, the
computer system of the seventh exemplary embodiment has
an effect that it is possible to enhance throughput of the
system greatly.

Here, an instruction statement, such as a pragma, which
indicates the offload starting position and the offload ending
position, may be embedded in the program in some cases. In
the case of searching for and finding out the instruction
statement in the program, the position of the instruction
statement may be conceived to be the offload starting
position and the offload ending position.

In the exemplary embodiment according to the present
invention, the host processor and the accelerator are exem-
plified as the plural processor. Moreover, it is assumed that
each of the host processor and the accelerator includes a
plurality of built-in CPU cores. Moreover, it is assumed that
the host processor and the accelerator are good at the scalar
operation and the vector operation respectively. On the other
hand, the present invention has no limitation in architecture,
number of built-in CPUs, an applied application of the plural
processor.

As understood from the explanation on each exemplary
embodiment, it is enough if the processor satisfies the
following condition.

1) Number of processors is not smaller than 2.

Since a target of the present invention is a system which
offloads a whole of or a portion of a program, a plurality of
processors are required.

2) Each processor holds a resource which influences
performance related to a predetermined process.

By selecting one of offloading and not offloading a whole
of or a portion of the program, the present invention makes
the unused resource zero to the utmost, and enhances
performance of the whole system. Therefore, each processor
has the resource whose process performance (such as a CPU
usage time, a plurality of CPU cores, or the like) of the
whole system is changed according to being used or not
being used.

3) Architecture of each processor is optional.

The application, the calculation process and the like,
which is suitable to the processor, that is, to which the
processor can provide the highest performance, are different
in some cases by a difference of architecture. However, it is
enough if the processor can process the offload part. There-
fore, internal structure and a process scheme of the processor
are optional.

4) Number of built-in CPU cores of each processor is not
smaller than 1.

In the present invention, the unused quantity of the
resource of each processor is taken into consideration. But,
even in the case that the processor includes only one CPU
core, it is possible to define the unused resource as an
execution time of CPU or the like. Therefore, number of the
built-in CPU cores is optional.

Here, each kinds of the programs in the description may
be stored in a semiconductor storage device such as Read

10

15

20

25

30

35

40

45

50

55

60

26
Only Memory (ROM), Random Access Memory (RAM), a
flash memory or the like, and a non-transitory medium such
as an optical disc, a magnetic disc, an optical magnetic disc
or the like.

Moreover, it is possible to combine the above-mentioned
exemplary embodiment with the other exemplary embodi-
ment.

While the invention has been particularly shown and
described with reference to exemplary embodiments thereof,
the invention is not limited to these embodiments. It will be
understood by those of ordinary skill in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the present invention
as defined by the claims.

This application is based upon and claims the benefit of
priority from Japanese patent application No. 2012-142901,
filed on Jun. 26, 2014, the disclosure of which is incorpo-
rated herein in its entirety by reference.

INDUSTRIAL APPLICABILITY

The present invention is applicable to a system in which
a server with a sub processor realizes a service such as image
monitoring, image conversion, picture image, financial pro-
cess or the like. Moreover, the present invention is also
applicable to a case that a system, which includes a cluster
whose computers have performance values different each
other, realizes an application which finds a result by carrying
out a predetermined process per an input and to which an
offload part is designated.

REFERENCE SIGNS LIST

1600 program group

The invention claimed is:

1. A program conversion device, comprising:

a memory;

a processor;

storing a specific process determining unit in the memory

which determines a range of a partial program to
perform a specific process in a target program which
includes a first execution scheme specifying program
which executes in parallel with a first ratio of being a
usage ratio of a first usage quantity with respect to a
first resource of a first processor and a second usage
quantity with respect to a second resource of a second
processor; and

storing a process converting unit in the memory which

converts the partial program into a second execution
scheme specifying program by the processor in which
the first processor and the second processor operate
simultaneously with a second ratio of being the usage
ratio different from the first ratio and generating a
converted program, wherein the converted program
includes a process switching program which switches
from the first execution scheme specifying program to
the second execution scheme specifying program and
vice versa based on a command from outside.

2. The program conversion device according to claim 1,
wherein the converted program further includes the first
execution scheme specifying program, the second execution
scheme specifying program.

3. A program converting method, comprising:

determining a range of a partial program to perform a

specific process in a target program which includes a
first execution scheme specifying program which
executes in parallel with a first ratio of being a usage

US 9,483,324 B2

27

ratio of a first usage quantity with respect to a first
resource of a first processor and a second usage quan-
tity with respect to a second resource of a second
processor; and

converting the partial program into a second execution
scheme specifying program which executes in parallel
with a second ratio of being the usage ratio different
from the first ratio, wherein the converted program
includes a process switching program which switches
from the first execution scheme specifying program to
the second execution scheme specifying program and
vice versa based on a command from outside.

4. A process switching method, comprising:

switching from a first process unit to a second process unit
and vice versa as specified in a converted partial
program based on a command from outside,

wherein the first process unit operates based on a first
execution scheme which executes in parallel with a first
ratio of being a usage ratio of a first usage quantity with
respect to a first resource of a first processor and a
second usage quantity with respect to a second resource
of a second processor, and the second process unit
operates based on a second execution scheme which
executes in parallel with a second ratio of being the
usage ratio different from the first ratio.

5. A non-transitory storage medium storing an execution
scheme determining program which makes a first processor
operate as

a first process unit which operates based on a first execu-
tion scheme which executes in parallel with a first ratio
of being a usage ratio of a first usage quantity with
respect to a first resource of a first processor and a
second usage quantity with respect to a second resource
of a second processor,

a second process unit which operates based on a second
execution scheme which executes in parallel with a
second ratio of being the usage ratio different from the
first ratio, and

a process switch unit which switches from the first
process unit to the second process unit and vice versa
as specified in a converted partial program based on a
command from outside.

6. A method of determining execution scheme, compris-

ing:

selecting any one of a first execution scheme which
executes in parallel with a first ratio of being a usage
ratio of a first usage quantity with respect to a first
resource of a first processor and a second usage quan-
tity with respect to a second resource of a second
processor, and a second execution scheme which
executes in parallel with a second ratio of being the
usage ratio different from the first ratio;

setting the first execution scheme or the second execution
scheme based on the selection result; and

aprocess switching program which switches from the first
execution scheme specifying program to the second
execution scheme specifying program and vice versa
based on a command from outside.

7. The method of determining execution scheme accord-
ing to claim 6, wherein any one of the first execution scheme
and the second execution scheme is selected so that a unused
quantity of the first resource and the second resource
become small.

8. The method of determining execution scheme accord-
ing to 6 or 7, wherein applying the first execution scheme to

28

input data which have number of first allotment, and apply-
ing the second execution scheme to input data which have
number of second allotment.

9. The method of determining execution scheme accord-

5 ing to claim 8, wherein determining the number of first

allotment and the number of second allotment respectively
based on a priority of the first execution scheme and the
second execution scheme.

10. The method of determining execution scheme accord-

10 ing to claim 8 or 9, further comprising:

measuring performance when the number of first allot-
ment and the number of second allotment are changed
and

determining the number of first allotment and the number
of second allotment based on a the performance,

wherein any one of the first execution scheme and the
second execution scheme is selected based on the
determined number of allotment.

11. A non-transitory storage medium storing a program

20 which makes a first processor operate as

a execution scheme determining unit which selects, as
execution scheme to executing a specific program, any
one of a first execution scheme which executes in
parallel with a first ratio of being a usage ratio of a first
usage quantity with respect to a first resource of a first
processor and a second usage quantity with respect to
a second resource of a second processor, and a second
execution scheme which executes in parallel with a
second ratio of being the usage ratio different from the
first ratio,

a execution scheme setting unit which sets the first
execution scheme or the second execution scheme
based on the selection result; and

a process switching program which switches from the first
execution scheme specifying program to the second
execution scheme specifying program and vice versa
based on a command from outside.

12. A processor system, comprising:

a first processor which includes a first resource; and

a second processor which includes a second resource,

wherein the first processor operates as
a process switch unit which switches from a first

process unit to a second process unit and vice versa
as specified in a converted partial program based on

a command from outside, the first process unit oper-

ates based on a first execution scheme which

executes in parallel with a first ratio of being a usage
ratio of a first usage quantity with respect to a first
resource of a first processor and a second usage

quantity with respect to a second resource of a

second processor, and the second process unit oper-

ates based on a second execution scheme which
executes in parallel with a second ratio of being the
usage ratio different from the first ratio, and

first partial process unit which utilizes the first

resource of the first process unit and the second

process unit.
13. The processor system according to claim 12, wherein
the second processor operates as second partial process unit

60 for utilizing the second resource of the first process unit and

the second process unit.

14. A parallel execution method, comprising:

by a first processor,

switching from a first process unit to a second process unit
and vice versa as specified in a converted partial
program based on a command from outside, the first
process unit operates based on a first execution scheme

15

25

30

35

40

45

50

55 a

65

US 9,483,324 B2

29

which executes in parallel with a first ratio of being a
usage ratio of a first usage quantity with respect to a
first resource of a first processor and a second usage
quantity with respect to a second resource of a second
processor, and the second process unit operates based
on a second execution scheme which executes in par-
allel with a second ratio of being the usage ratio
different from the first ratio, and operating as a first
partial process unit which utilizes the first resource of
the first process unit and the second process unit; and
by the second processor, operating as a second partial
process unit which utilizes the second resource of the
first process unit and the second process unit.

#* #* #* #* #*

30

